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Abstract—Smart passenger-seeking strategies employed by taxi
drivers contribute not only to drivers’ incomes, but also higher
quality of service passengers received. Therefore, understanding
taxi drivers’ behaviors and learning the good passenger-seeking
strategies are crucial to boost taxi drivers’ well-being and public
transportation quality of service. However, we observe that
drivers’ preferences of choosing which area to find the next
passenger are diverse and dynamic across locations and drivers.
It is hard to learn the location-dependent preferences given the
partial data (i.e., an individual driver’s trajectory may not cover
all locations). In this paper, we make the first attempt to develop
conditional generative adversarial imitation learning (cGAIL)
model, as a unifying collective inverse reinforcement learning
framework that learns the driver’s decision-making preferences
and policies by transferring knowledge across taxi driver agents
and across locations. Our evaluation results on three months of
taxi GPS trajectory data in Shenzhen, China, demonstrate that
the driver’s preferences and policies learned from cGAIL are
on average 34.7% more accurate than those learned from other
state-of-the-art baseline approaches.

Index Terms—Urban Computing, Inverse Reinforcement
Learning, Generative Adversarial Imitation Learning

I. INTRODUCTION

Taxi service plays an important role in the public trans-

portation systems and is an indispensable part for modern life.

It not only provides a convenient way of transportation, but

also creates a large number of jobs that support many drivers’

families. Therefore, improving taxi operation efficiency is both

a public management matter that imposes influences on the

urban transportation and a business problem for each taxi

driver. In the traditional taxi operation model when a taxi

is vacant, the taxi driver is making a sequence of decisions

on which directions to go to find the next passengers. A

taxi driver may consider various factors when making such

decisions, for example, the traffic condition and estimated

travel demand in the surrounding areas, given the current

location and time. Moreover, different drivers are likely to

have different preferences over these decision-making fac-

tors, which ultimately lead to divergent business efficiencies

and income levels. Hence, it is valuable to unveil the good

strategies from those expert taxi drivers, and by sharing such

knowledge, to boost taxi driver’s business efficiencies and

public transportation quality.

Inverse reinforcement learning (IRL) [1]–[7] is a typical

solution to characterize such unique decision-making prefer-

ences of individual drivers. IRL learns a preference vector

Fig. 1: Diverse driver preferences across regions.

to represent the significance of each factor to the driver. It

is commonly assumed that the learned preference vector by

IRL is inherent to the taxi driver and invariant across different

geographical regions. Therefore, it can be used to estimate the

decision-making policy of the driver in any region.

However, we found through analysis on real taxi GPS

trajectory data that this is not true. The preference vectors

of taxi drivers hinge significantly over different locations.

Fig 1 shows the trajectory coverage of a selected taxi driver

in Shenzhen, China. The driver’s home location is marked

on the map. We use MaxEnt IRL [4] approach to learn

a preference vector based on the driver’s GPS trajectories

from the west and the east part of Shenzhen respectively.

Three decision-making features were considered, including the

time from work started (i.e., working duration), traffic speed

(indicating traffic condition), visitation frequency (indicating

the popularity) of the surrounding area of the current location.

The table on the top-right suggests that the same driver exhibits

drastically different preferences towards the same factors while

driving in the two different sides of the city: When the driver

is on the east part (downtown), she prefers a longer working

time (i.e., close to the end of a day’s work) to be close to

home, regions with higher driving speed to avoid traffic, and

less popular areas to escape downtown congestion. However

the preferences are the opposite when she is working in the

west part of the city where lies the rural areas.

The above phenomenon are common in taxi trajectory data,

where the histogram in Fig 1 shows that most (90%) drivers

have significant preference difference (in L∞-norm) across

locations. Hence, in reality, the human (driver) agents’ prefer-
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ences are dynamic and dependent on geographic locations. As-

suming such preferences spatially invariant makes the results

of IRL less accurate and might lead to infeasible policies being

generated. Alternatively, a better solution is to learn location-
dependent preferences of each driver. Unfortunately, this task

is hard for traditional IRL approaches [1]–[6] because the data

for each driver might only cover part of the city, making it hard

to infer the driver’s preferences in the rest of the areas.

In this paper we tackle the above challenge and propose a

novel solution. We formulate the passenger-seeking problem

as a Markov Decision Process (MDP) and extract various

decision-making features that the drivers evaluate when mak-

ing decisions, such as travel demand and traffic speed (Sec IV).

Our observation is that all the taxi drivers (as a group) would

have significantly higher data coverage over geographical

regions compared to an individual driver, and many taxi drivers

share common decision-making preferences. Built upon this

observation, we make the first attempt to develop a novel

conditional generative imitation learning (cGAIL) model to

collectively and inversely learn the driver’s decision-making

preferences and policies by transferring knowledge across taxi

driver agents and across locations (Sec V). We validate our

framework using a unique dataset from Shenzhen, China, with

three months of taxi GPS trajectory data. Results demonstrate

that the policies learned from cGAIL are on average 34.7%

more accurate than those learned from other state-of-the-art

baseline approaches (Sec VI).

II. OVERVIEW

In this section, we introduce our dataset, define collective
inverse preference learning problem, and outline the solution

framework.

A. Data Description

We use two datasets for our study, including (1) taxi

trajectory data and (2) road map data. For consistency, all

these datasets are aligned with the same time period.

Taxi trajectory data. We use taxi trajectory dataset in July,

August and September, 2016 in Shenzhen, China. This dataset

contains GPS records from 17,877 unique GPS-set-equipped

taxis. Each of these taxis generates GPS records in roughly

every 30 seconds. Every GPS record holds five attributes,

including a unique plate ID, longitude, latitude, time stamp

and passenger indicator. The passenger indicator is a binary

value with 1 indicating a passenger on board, and 0 otherwise.

Road map data. The road map data of Shenzhen is obtained

from OpenStreetMap [8], covering an area from 22.44°N

to 22.87°N in latitude and from 113.75°E to 114.65°E in

longitude with 455, 944 road segments.

B. Problem Definition and Solution Framework

We denote each driver as d, and the set of all drivers as D.

Taxis equipped with GPS sets generate GPS records over time.

Each GPS point p consists of a location in latitude lat and

longitude lng, and a time stamp t, i.e., p = 〈lat, lng, t〉. Below,

we define a trajectory of a taxi composed of GPS records.

Definition 1 (Trajectory tr). A trajectory tr is a sequence of

GPS points when the taxi is vacant and the driver is looking

for passengers, denoted as tr = {p1, · · · , pn0
} (n0 is the

length of trajectory tr). Each taxi driver d has a collection of

GPS trajectories over time. We denote the set of trajectories

generated by a driver d ∈ D as Trd.

Note that we focus on each drivers’ “seeking” trajectories

which capture sequences of decisions made by the taxi driver

on which direction a to go from the current state s (i.e.,

where the taxi is and what time it is in a day) to look for

passengers. Hence, the taxi driver’s passenger-seeking strategy

can be characterized by two inherent functions with driver

(defined below): (i) reward function and (ii) policy function.

Definition 2 (Reward function R). Given the current state

(e.g., location and time of day) s, the driver of a vacant taxi

chooses an action a (e.g., go east or west) based on her own

evaluation of the expected reward (e.g., revenue in the next

hour) of such a move. Denote such a function as R(s, a|d) for

d ∈ D.

Such a reward function (in general a non-linear function)

governs which direction a the driver will follow for the

intrinsic pursuit of a higher reward over time. Each driver’s

reward function might be unique due to different knowledge

and driving habits. The underlying patterns of direction choice

is characterized as a driver policy function as defined below.

Definition 3 (Policy function π). A policy function π(a|s, d)
of a taxi driver d ∈ D characterizes the probability distribution

for d to choose action a given the current state s.

Here again, an action is a driver’s driving behavior such as

driving towards a particular direction, and we denote the set

of all possible actions as A. Given a driver d and a state s,

π(·|s, d) gives the likelihood over all actions a ∈ A that the

target driver is likely to take.

Now we are ready to formally define our problem as below.

Collective inverse preference learning problem. Given tra-
jectories Trd collected from a group of taxi drivers D = {d},

we aim to learn a unifying model to inversely and jointly

learn the policy π(a|s, d) and reward function R(s, a|d) for

all drivers d ∈ D.

Challenges. This problem is challenging in two aspects: i) a

driver’s reward and policy functions are location dependent

(as observed in Fig 1). Therefore it is challenging to recover

the two functions for areas without the target driver’s demon-

stration data; ii) drivers possess diverse reward and policy

functions, thus how to develop a unifying model to capture

individual driver’s reward and policy functions precisely is

challenging.

Solution Framework. Our proposed solution to tackle the two

challenges and solve the proposed collective inverse preference

learning problem consists of three main components: Stage 1
- data preparation, Stage 2 - data-driven modeling, and Stage
3 - conditional inverse preference learning which are detailed

in Sec III, IV and V respectively.
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III. STAGE 1 - DATA PREPARATION

A. Map & Time Standardization and Trajectory Aggregation

Map griding. For the ease of analyzing taxi drivers’ decision-

making behaviors, we partition the city into small equal side-

length grid cells [9], [10] with pre-defined side-length b =
0.01◦. It leads to 1, 934 grid cells connected by road network.

We denote each grid cell as gi, with 1 ≤ i ≤ 1, 934, and the

complete grid cell set as G = {gi}.

Time quantization. We further divide the time in a day into

five-minutes intervals, i.e., 288 time slots a day, denoted as

I = {t̃j}, with 1 ≤ j ≤ 288.

Trajectory Aggregation. A combination of a grid cell gi,
time interval t̃j , and the day of a week day, uniquely defines

a spatio-temporal state, or state in short. Each GPS record

p = 〈lat, lng, t〉 can thus be represented as an aggregated state

s = 〈g, t̃, day〉, where the location (lat, lng) ∈ g, the time

stamp t ∈ t̃, and day indicates the day of the week. Similarly,

we can aggregate taxi trajectories into state level sequences.

Each of taxi driver d’s trajectories tr ∈ Trd defined in section

II-B can then be mapped as sequences of spatio-temporal states

s, and the set of d’s trajectories can be denoted by Td:

τ = {s1, · · · , sn′}, Td = {τ1, · · · , τmd
}, (1)

where n′ is the length of a trajectory in states, and md is the

number of trajectories of driver d.

B. Decision-Making Feature Extraction

Taxi drivers consider various factors (features) of the current

“state” (i.e., where the taxi is and what time it is in a day),

when making decisions of which direction to go to look for

passengers. In this section, we extract and summarize all such

features (denoted as a feature vector f ) into two categories

below, namely, state features fs and condition features fc.

Clearly, f = [fs, fc]. All of the state and condition features

were extracted from historical taxi GPS trajectory data from

07/2016 to 09/2016 in Shenzhen, China.

State features fs. When a taxi driver d is at a certain state

s = 〈g, t̃, day〉, the driver considers a list of features associated

with the state s to make a decision, including three categories

(fs = [fT, fM, fD]) as traffic features fT, temporal features fM
and PoI distance features fD detailed below.

Traffic features (fT): This category include four features rep-

resenting the traffic status of the state s from the historical

data, including travel demand fT,1, traffic volume fT,2, traffic

speed fT,3, and waiting time fT,4.

Temporal features (fM): This category includes the time of the

day fM,1 and the day of the week fM,2 for the target state s.

Distance to places of interests (PoIs) (fD): There are 23 fea-

tures [fD,1, · · · , fD,23] in this category, which characterize the

distances in kilometers from the location of state s to 23 places

of interests in Shenzhen, including 5 train stations, 1 airport,

5 popular shopping malls, 8 ports and checking points, and 4

major hospitals.

Condition features fc. Condition features fc consist of four

driver-related features serving as driver identity and a location

identifier. Each driver is identified by his/her home location,

working schedule and experience. A location identifier is a

target grid cell g.

Home location (fc,1): This feature characterizes the distance

in kilometers from the current state location to the driver’s

home location, indicating the driver’s preferences to work

closer vs far away from home.

Working schedule (fc,2 and fc,3): This feature consists of

time differences of current state s from the driver’s average

starting time and to the ending time, indicating the driver’s

working schedule.

Familiarity (fc,4): This feature captures the average visitations

of the driver to the current state s from the historical data,

indicating how familiar the driver is to this particular region.

Location identifier (�): Each location is a specific grid g ∈ G
in the partitioned road map of the city.

IV. STAGE 2 - DATA-DRIVEN MODELING

Taxi drivers make a sequence of decisions on which di-

rection to go to find the next passenger. In this section,

we elaborate on how to model taxi drivers’ decision-making

processes as MDPs.

We consider each taxi driver as an “agent”. When looking

for passengers, the driver keeps evaluating various features in

surrounding areas of the current state s, based on which the

driver decides which direction to go to find the passengers.

This whole process consisting of a sequence of decisions from

the driver forms a trajectory. Each taxi driver aims to maximize

the total received “reward” along the trajectory. As a result, the

driver’s passenger-seeking process can be naturally modelled

as an MDP. Below, we explain how each component in an

MDP is mapped and extracted from taxi trajectory data.

Agent: Each taxi driver d is considered as a unique agent.

Different drivers have different reward functions.

State set S: Each state s ∈ S is a spatio-temporal region,

denoted as 〈g, t̃, day〉 as illustrated in Sec III. Map griding

partitions the road map into 1, 934 grid cells, and each day

is divided into 288 5-minutes intervals with seven days a

week. As a result, the state space size is 1, 934 × 288 × 7 =
3, 898, 944.

Action set A: An action a ∈ A denotes a direction to go when

looking for passengers. We consider nine actions that an agent

can take, including moving to one of the eight neighboring grid

cells as an action, and staying at the current action.

Transition probability function P : S ×A �→ [0, 1]: Clearly,

transitions in this MDP are deterministic, namely, an action

will surely lead the agent to the corresponding next grid cell.

Reward R : S×A �→ R: A reward function R(s, a) measures

the reward a driver obtains by taking a direction (action)

a from state s. Since a driver agent aims to maximize the

total expected reward, the reward function governs how the

driver chooses the next directions to go to. R(s, a) is in

general a non-linear function of the features associated with

the surrounding regions of state s. In our study, R(s, a) is

unknown and is to be learned from the driver’s historical

trajectory data.
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Policy function π : S × A �→ [0, 1]: A policy function

π(a|s, d) defines the probability of choosing a direction action

a ∈ A at the current state s. Taking the features of a state s
and the driver id d as input, a policy function randomly outputs

a direction a ∈ A from the driver’s policy distribution. In our

study, the policy function (as a non-linear function in general)

is to be learned from the driver’s trajectories.

V. STAGE 3 - CONDITIONAL GENERATIVE ADVERSARIAL

IMITATION LEARNING

With the MDP modeling for taxi driver decision-making

process, we are in a position to investigate how we may

learn the policy and reward functions of each individual

driver (agent) from their demonstrated trajectory data, with

which we can further quantify and predict their passenger-

seeking behaviors accurately. To achieve this goal, we need to

answer two questions: Q1 (Reward/Policy Function Learning):
For each individual driver agent, how to inversely learn the

reward/policy function from the demonstrated trajectory data?

Q2 (Function Transferability across Locations and Agents):
How to learn the reward/policy functions for agents that are

transferable across locations and agents?

To answer Q1, we introduce the state-of-the-art generative

adversarial imitation learning, GAIL in Sec V-A. For Q2, we

develop a novel conditional generative adversarial imitation

learning, cGAIL, in Sec V-B. The proposed cGAIL model

is a unifying inverse learning model that allows knowledge

transfer across taxi driver agents and across locations.

A. Learning Reward/Policy functions with GAIL

User choice modeling has been extensively studied to

learn human agents’ decision-making reward and policy func-

tions [4], [6], [11]–[13], where imitation learning methods like

GAIL [6] learns general non-linear reward function. Therefore,

we briefly introduce GAIL, and highlight its limitations on the

transferability across locations and agents. Built upon these

approaches, we will propose our cGAIL model in Sec V-B.

GAIL extends IRL by a non-linear reward function R(s, a),
and a non-linear policy function π(a|s) both using deep neural

networks. It introduces a regularizer function ψ(R) to avoid

overfitting, which leads to eq.(2)1,

max
R

ψ(R) +
(
min
π

−H(π)− Eπ[R(s, a)]
)
+ EπE

[R(s, a)].

(2)

It was proven in [6] that when the function ψ(R) is properly

chosen, the dual problem of eq.(2) is equivalent to minimizing

the Jensen-Shannon (JS) divergence between the trajectory

distribution induced by obtained π and empirical πE (from

T ), namely, eq.(2) becomes2

min
π

−λH(π) +DJS(π, πE), with (3)

DJS(π, πE) = max
R

EπE
[ln(R(s, a))] + Eπ[ln(1−R(s, a))],

1Note that in eq.(1) in [6], authors use cost function c(s, a) : S × A �→
(0, 1) (indicating the cost of taking (s, a)). We in this work use reward
R(s, a), equivalent to R(s, a) = 1− c(s, a) for clarity.

2Please refer to [6] for detailed proof.

with λ ≥ 0 as the Lagrangian multiplier introduced in deriving

the IRL dual problem [6]. Clearly, DJS(π, πE) is the JS-

divergence. As a result, The problem in eq.(3) can be tackled

using generative adversarial networks (GAN) model [14],

where the policy function π(a|s) and reward function R(s, a)
are the generator network and discriminator network, respec-

tively. Hence, GAIL model applies to each individual driver

agent to extract the policy and reward function. Given that

the driver’s reward function is location dependent in Fig 1,

GAIL cannot model the reward function on locations where the

driver have never visited from the demonstrated trajectory data.

Moreover, for each individual driver agent, a separate GAN

model needs to be trained, thus no knowledge is shared across

driver agents. To tackle these problems (namely, answering

Q2), we proposed a novel conditional generative adversarial

imitation learning (cGAIL) model below.

B. Conditional Generative Adversarial Imitation Learning

There are two ideas behind cGAIL design: First, each

individual driver agent covers partly the state (spatio-temporal

regions) and action (directions to go) space in the underlying

MDP, but the trajectories from all driver agents collectively

provide a better coverage of states and actions; Second, driver

agents share commonalities of their reward functions, e.g.,

some drivers may possess similar reward functions due to

their common profiles (in ages, home locations, etc), thus their

trajectories can be reused to infer reward functions of each

other. To summarize, i) knowledge learned from trajectories

of different driver agents is transferable across driver agents

(referred to as agent transferability); ii) knowledge learned

from trajectories in different geographical regions is transfer-

able across locations (referred to as location transferability). In

this section, we will develop conditional generative adversar-

ial imitation learning (cGAIL), a unifying collective inverse

reward learning framework to characterize drivers’ rewards

and policies by transferring knowledge across trajectories from

various locations and driver agents.

To distinguish the locations and driver agents, we define the

condition variable (vector) as a list of condition features (as

defined in Sec III-B), i.e., c = fc = [fc,1, fc,2, fc,3, fc,4, �].
The inverse reinforcement learning problem in eq.(2) was

defined for a single agent and without location dependency,

which can be extended to the following format to characterize

location and agent transferabilities by considering it as a

minmax game under condition c,

max
R

min
π

−λH(π(·|c)) + EπE
[ln (R(s, a|c))]

+ Eπ[ln (1−R(s, a|c))] + EπE
[ln (1−R(s, a|c′))],

(4)

where the policy net (as the generator) π generates an action

a for an input state s given a condition c, such that (s, a)
looks “real”, i.e., as if generated by the given driver agent

and location (defined in c). Moreover, the reward net (as the

discriminator) R increases the rewards for (s, a)’s from policy

πE with the condition c, lowers down the rewards for (s, a)’s
generated from π with the condition c, and also decreases

the rewards for (s, a)’s from expert policy πE , but by an
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Fig. 2: cGAIL model structure.

inconsistent condition (in driver and/or location) c′. Below,

we detail the policy net π and reward net R, and the training

algorithm for the proposed cGAIL model.

Policy network π (Generator): The policy net π takes

condition features c = fc as input, indicating the target

driver agent and the target location (grid cell) �. Moreover,

the input state features for policy net π include three parts:

(1) The traffic features fT = [fT,1, · · · , fT,4] of the current

state s (at location �) and all 24 neighboring grid cells in

�’s 5 × 5 neighborhood, N (s) = {s′1, · · · , s′24}, denoted as

[fT(s), fT(s
′
1), · · · , fT(s′24)]; (2) Temporal features of the cur-

rent state s, fM(s) = [fM,1(s), fM,2(s)], and (3) POI distance

features of the current state s, fD(s) = [fD,1(s), · · · , fD,23(s)]
as defined in Sec III-B.

As a result, the input state features for s form a feature vec-

tor fs(s) = [fT(s), fT(s
′
1), · · · , fT(s′24), fM(s), fD(s)] with

length of 125. The output of policy net π is a distribution

π(·|s) indicating the probabilities of choosing nine actions.

These actions will be randomly chosen based on π(·|s). Fig 2

illustrates the input and output of the policy net. Since the

input traffic features fT cover the 5 × 5 neighborhood of the

target state s, which can be viewed as a local traffic map,

we employ convolutional neural network [15] as the network

structure for policy net.

Reward network R (Discriminator): The reward network R
takes the same condition features c and state features fs(s)
from policy net, and the policy net output action a as input.

It outputs scalars within [0, 1], indicating the reward value of

a state-action pair (s, a). Similar to policy net, we employ

convolutional neural network for the reward network R.

cGAIL training algorithm: Alg 1 illustrates the detailed

process to train our proposed cGAIL model. During the

training process, we apply batch gradient descent approach

to update the policy network π and reward network R, with

a predefined K (i.e., the total number of epochs). The taxi

driver’s trajectories Td’s (as defined in Sec III-A) can be

broken down into n individual triples in state features, action,

and condition features, thus forming a training set for cGAIL

as T = {(fs(s1), a1, c1), · · · , (fs(sn), an, cn)}. During each

epoch 1 ≤ i ≤ K, we sample a batch of m real data

points, as Ti = {(fs(si1), ai1, ci1), · · · , (fs(sim), aim, cim)} ⊂ T
from the training set (Line 2). Then, we input the state and

condition features in Ti into policy network π to generate

actions ã, to construct a generated sample set denoted as

T̃i = {(fs(si1), ãi1, ci1), · · · , (fs(sim), ãim, cim)} (Line 3). More-

over, we replace the condition features in Ti with randomly

sampled condition features from T to construct triples with

real state-action pairs coupled with mismatched conditions,

i.e., T̂i = {(fs(si1), ai1, ĉi1), · · · , (fs(sim), aim, ĉim)} (Line 4).

Then, the reward network parameters θR are updated (Line 5)

by eq.(6) to maximize ṼR in eq.(5), with step size ηR.

ṼR =
1

m

m∑
j=1

(
ln (R(fs(s

i
j), a

i
j |cij)) + ln (1−R(fs(s

i
j), ã

i
j |cij))

+ ln (1−R(fs(s
i
j), a

i
j |ĉij))

)
, (5)

θR =θR + ηR∇θR
ṼR. (6)

Next, we update policy network parameters θπ by eq.(7) to

minimize Ṽπ below, with ηπ as the step size (Line 6).

Ṽπ =
m∑
j=1

( 1

m
ln (1−R(fs(s

i
j), ã

i
j |cij))− λH(π(fs(s

i
j)|cij))

)
,

θπ =θπ + ηπ∇θπ Ṽπ. (7)

Algorithm 1 cGAIL Training Process

Input: Taxi drivers’ decision-making data as state-action-

condition pairs T = {(fs(s), a, c)}. Initialize parameter

vectors θπ and θR for policy net and reward net, respec-

tively;

Output: Resulting θπ and θR.

1: for Each Epoch 1 ≤ i ≤ K do
2: Sample Ti ⊂ T ;

3: Generate T̃i from policy net π;

4: Sample/construct T̂i from T ;

5: Update θπ with Eq.6;

6: Update θR with Eq.7;

7: end for

VI. EVALUATIONS

We use three months taxi trajectory data collected from

07/2016 to 09/2016 to evaluate our proposed cGAIL in in-

versely learning the driver agents’ policy and reward functions.

Our results demonstrate that the policies learned from cGAIL

are on average 34.7% more accurate than those learned from

other state-of-the-art baseline approaches.

A. Experiment settings

Evaluation metrics. In order to measure the accuracy of the

learned policy net3 from the empirical ground-truth policy

from the collected data, we employ the Kullback-Leibler (KL)

divergence [16] and L2-norm [17].

Expert Driver Selection. In all inverse reinforcement learning

(IRL) approaches [18], a common assumption is made that the

demonstrations were collected from experts, namely, generated

by the (near-)optimal policy. As a result, we select experienced

drivers (with high earning efficiencies) from our datasets to

3Note that reward net and policy net are coupled in mimicking data
distributions generated from driver agents. It is sufficient to evaluate policy
net (rather than reward net) by comparing the obtained policy to the empirical
policy from the data.
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Fig. 3: Comparison with baselines

conduct our study. First, we quantify the expertise of taxi

driver by their Earning efficiency re, defined as re = E/tw,

where E is the total income in the sampling time span, and

tw represents the driver’s total working time in hour in the

same sampling period of three months. We thus define and

select expert drivers with earning efficiency ranked top 15%
in 07/2016-09/2016. We denote this set of expert taxi drivers as

E , and each individual expert taxi driver as e ∈ E . Eventually,

we obtained a group of 3, 044 expert drivers for our study, out

of a total of 17, 877 drivers from the data.

Testing location selection. For each expert taxi driver, we

choose 20 grid cells as testing locations. The testing locations

are with high visits by the driver, say, more than 2000 visits,

so we have a relatively accurate estimate of the ground-truth

policy in these grid cells. Then, we train the cGAIL model

without these testing locations, infer the policies for these

locations, and compare them with the ground-truth policies.

Baseline methods comparison. We learn expert taxi drivers’

policies and compare the learning accuracy to various baseline

methods, including MaxEnt IRL [4], MaxCausalEnt IRL [3],

RelEnt IRL [5] and GAIL [6] against ground truth.

B. Experiment results

Figure 3 shows the KL-divergence and L2-norm of the

learned policies from the ground-truth policies for different

methods. We randomly choose 50 driver agents (on the x-axis)

to show the comparison results. The results with MaxEnt IRL

and MaxCausalEnt IRL have poor accuracies, say, roughly

1.5–8 times of that with cGAIL, and we ignored their results

for brevity. Their poor performances are simply due to the

linear assumption of the reward function and their inaccurate

estimation of transition probability matrix (given MaxEnt IRL

and MaxCausalEnt IRL are both model-based approaches).

When comparing to RelEnt IRL and GAIL, our proposed

cGAIL still outperform them with an average of 34.7% and

31.0% reduction on KL-divergence and L2-norm respectively.

VII. CONCLUSION

In this paper, we developed a novel conditional genera-

tive adversarial imitation learning (cGAIL) model that learns

drivers’ decision-making preferences and policies by transfer-

ring knowledge across taxi driver agents and across locations.

Our evaluation results on three months of taxi GPS trajectory

data in Shenzhen, China, demonstrated that the driver’s prefer-

ences and policies learned from cGAIL are on average 34.7%

more accurate than those learned from other state-of-the-art

baseline approaches.
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